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The relation between the Rouse matrix R and the Zimm matrix Z. defined for polymer chains. 
is generalized for all trees. The path matrix Wu of an unoriented tree and the walk matrix Wo 
of an oriented tree are defined and their relations with the corresponding incidence matrices G 
and S of trees: (GGT) = n( W!Wu ) -1 and (SST) = II( WJWo ) - 1 are proved. The elements of the 
quadratical forms WTW are the number of path (selfavoiding walks) in which the edge (arc) i is 
present together with the edge (arc) j. The traces of WT Ware the Wiener path number. 

Many physicochemical properties of molecules were connected. directly or indirectly. 
with invariants of the corresponding molecular graph matrices 1.2. In Table I sorr:e 
of known matrices of graphs together with their corresponding relations are reviewed. 

The simplest invariants of graph matrices are known as topological indices. The 
oldest one is the Wiener path number, which is the sum of distances in a graph 3 . 

With the Wiener number such physical properties as boiling points of linear 
alkanes4 •5 , boiling points of alcohols and ethers6 • viscosity of linear and comblike 
alkanes 7 etc. were successfully correlated. A more detailed analysis connects with 
the physicochemical properties the spectra of graphs 2 . 

In the theory of random flight of polymer chains. the Rouse matrix R is used. It is 
the inverse of the Zimm matrix Z, which is the rr:atrix SST of the bond graphS - 11 

of the polymer chain. Distribution functions derived from random flight models 
include the effects of excluded volume and perturbations due to solvent interaction 
into the square of the polar radii of gyrations (S2). Their components are defined 
by the relation 

n 

(nSJ2 = I xi . 
i= 1 

where Xi is the xth component of the position vector Pi from the center of mass of 
the ith polymer bead, (n + 1) is the number of beads in a polymer chain. 

This expression leads to the matrix equation 

(1) 
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TABLE I 

Matrices of graphs; , is the diagonal unit matrix, MT is the transposed matrix, M -1 is the inversed 
matrix 

Matrix 

Adjacency 

Incidence 

Graph 

Kirchhoff 

Adjacency of the 
bond graph 

Distance 

Cycle 

Zimm 
for a chain 

Rouse 
for a .:hain 

Code Matrix elements 

A a i i = the number of loops incident with the vertex i 

s 

a ij = the number of edges incident with both vertices i 
andj 

a ij = the number of arcs out of i into j in the oriented 
graphs 

Sij = + I if the arc i is incident out of the vertex j 
S ij == - 1 if the arc i is incident into the vertex i 

= 0 otherwise 

G g Ij = --t- I if the edge i is incident with the vertex.i 

s 

= 0 otherwise 

A of an unoriented graph without loops 
A = (1/2) (GTG - STS) 

b i i = the degree of the vertex i 
bij = the number of edges incident with both 

vertices i and j 
S= GTG 

STS or SST 

D dij = number of edges on the walk between vertex i and 
vertex j 

dij are powers d of matrices Ad at which the matrix 
element a'fj is at first non zero 

Ref. 

1,2 

I, 11 

2 

1/2"£.dij = the Wiener number 1,2 

C 

z 

R 

C'lk = + 1 if the edge k belongs to the Ilh simple cycle 
= 0 otherwise 

RC = 0 under addition modulo 2 

Zj; = 2 
=i(i:!.l) = -I 

= 0 otherwise 
Z = STS of the chain 

R = Z-I ( ·f ...... 'ij= n-i)jl i:=j 
'ij = (n - j) i if i -;::cj 

15 

8 

Collect. Czech. Chern. Comrnun. (Vol. 54) (1989) 



2150 

TABLE I 

( Continued) 

Matrix 

Path 

Walk 

Kunz: 

Code Matrix elements Ref. 

~-----------~~----

Wu Wu(n) is defined in the block form. To Wu\1I - I) is 
added the block with the elements 

lI'ij = + I if the edge j is in the path j in the even distance 
(0, 2, 4, ... ) from the last edge in the block 

lI'ij = -I if the edgej is in the path i in the odd distance 
(1, 3, ... ) from the last edge in the block 

Wij = 0 otherwise 

Wu (lI) of a chain 
Wij = ± 1 if (i + j) ;;;. n 
wij = 0 if (i + j) < n 
WJWu of a chain 
wij = min (i,j) 

n 

L WJW(k) = R 
k=l 

Wo Wo(n) is defined in the block form. 
To Wo(n - 1) is added the block with elements 
Wij = + 1 if the arc j is in the walk i and has the same 

orientation as the last arc in the block 
Wij = -- I if the arc j is in the walk i and has the opposite 

orientation as the last arc in the block 

This 
paper 

WTW wij = the number of path (walks) in which the edge (arc) i 
is present 

wij = the number of path (walks) in which the edge (arc)j 
is together with the edge (arc) i 
The signs are defined in the text. 

where v is the column vector of probabilities v i of finding of the x i component, "T is 
its transpose and ~ is the Rouse matrix (Table I). 

The solution of Eq. (1) has the form 

(2) 

where '1i are transformed coordinates of polymer beads, which are supposed to be 
equal, ;'i are the eigenvalues of a matrix and Tr is the trace of a matrix. The final 
solution is found by other approximations. 
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The problem of radii of gyration has its inverse. Viscoelastic properties of polymer 
chains were connected with the nearest neighbour matrix Z (Zimm matrix) 

x = (3kT/be) ZX, (3) 

where X. ic are column vectors of bead positions and bead velocities, k is the 
Boltzmann constant, T is the temperature, b is the mean square end to end distance 
of the submolecules and (! is the friction coefficient of the bead l2 . The solution is 
given by the eigenvalues of the Zimm matrix Z. 

The aim ofthis paper is to show that the relation between Rouse and Zimmmatrices 
can be generalized for all trees and that the Rouse matrix is the matrix of selfavoiding 
walks in a chain and its trace is the Wiener number. 

THEORETICAL 

The row vectors of the cycle matrix C are the closed paths or walks in the space of 

at most (~) edges (arcs) of a graph with the n vertices. We can define similarly 

matrices for all paths or walks in a graph. In the case of trees T such matrices have 
only (n - I) nonzero columns and are distinct from the blocks of cycle matrices C 
which are at trees zero matrices, because the trees are acyclic graphs. 

The incidence matrices of trees G and S differ only by the sign of their elements, 
the matrix G, defined for unoriented graphs, has all elements positive, the matrix S. 
defined for oriented graphs has always one element in a row negative. 

Thus the quadratical forms of the matrix G: GTG and GGT have all their clements 
positive. The quadratical forms of the matrix S have always positive elements on 
the diagonals. All off-diagonal elements of the matrix STS are negative, because in 
the rows of the matrix S is always one positive and one negative element. at the 
matrix SST the elements are positive, if both arcs i and j have the oposite orientation, 
or negative, if they have the same orientation. At a chain with the same orientation 
of its arcs all off-diagonal elements of the matrix SST are negative. 

The matrices STS and SST are known as the Kirchhoff matrices 2 • The matrix STS 
in 11 dimensional and has only one zero eigenvalue. The matrix SST of trees is (n - 1) 
dimensional and because both quadratical forms STS and SST have identical spectra. 
except zero eigenvalues, it is non-singular and has the inverse. It is thus possible 
to identify the Zimm matrix Z as the matrix SST of the chain and the Rouse matrix R 
is its inverse (SSTt 1. 

Because the matrices SST of all oriented trees are non-singular and have their 
inverse matrices, it is possible to find them; this can be expected also for similar 
matrices GGT of unoriented trees. 

It was noticed that the Rouse matrix R is the matrix of selfavoiding walks \n the 
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chain which gave a hint how to solve the problem of the inverse matrices (SSTt 1 

and (GGTt 1 generally. For this it is suitable to define at first the path matrix Wu 

and the walk matrix Wo of a tree. These matrices are defined recursively from matrices 
of trees with (n - 1) vertices. If the new vertex n is adjoined to a tree with (n - 1) 
vertices. a new edge (arc) appears connecting it with a vertex and (n - 1) paths 
(walks) appear. Thus the matrices W have the block form and their elements are: 

Wu: wij = I if the edge j in the path i is in the even distance (0,2,4, ... ) from 
the last added edge of the block, 

wij = -1 if the edge j in the path i is in the odd distance (1, 3, ... ) from the 
last added edge. 

Wo: wij = 1 if the arc j in the walk i has the identical orientation as the last 
added arc. 

Wij = - I if the arc j in the walk i has the opposite orientation as the last 
added arc, 

wij = 0 if the edge (arc)j is not in the path (walk) i. 

There are two quadratical forms of matrices W, their projections into the space of 
paths (walks) WWT and their projections into the space of edges (arcs) WTW. 

A path (walk) gives the distance between its starting and ending vertices, thus the 
sum of quadrates of unit elements of the matrix W gives the total distance of vertices 
in atree. which is known as the Wiener path number. These quadrates are obtained 
on the diagonals of both quadratical forms. In WTW the column sums are, in WWT 
the row sums are, the traces are identical with the Wiener number W = Tr(WTW) = 

= Tr(WWT). 
The diagonal elements of WTW give the number of paths (walks) in which the 

edge (arc) i is, the off-diagonal elements give the number of paths (walks) in which 
both edges (arcs) ij are together. The sign of the off-diagonal elements depends at 
edges on their distance in paths. It is +, if the distance is even and -, if the distance 
is odd. At arcs the sign is +, if both arcs have the same orientation and - if their 
orientation is opposite. Matrices WWT have on their diagonals the number of edges 
(arcs) in paths (walks), determining distances between vertices. 

Now it is possible to formulate the following theorem I: 

~Wu = n(GGTtl 

W~Wo = n(SSTt I 

The quadratical forms WTW of the path or walk matrix of a tree are the n multiple 
of the inverse matrix of the quadratical forms GGT or SST of the incidence matrices G 
or S of the tree. 
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The proof. In the case of unoriented trees all elements of GGT are positive and in 

the matrix W~Wu all neighbour edges of the diagonal edge have negative signs. 

If w~ multiply (WTW) (GGT), we count paths. If an edge i is on both matrices on 
the diagonaL all its paths are counted twice. From this number are substracted twice 
all paths in Wilich the edge i is not on the end of a path and once all paths, at which 
the edg~ is on the end of a path. This leaves (n - 2) paths connecting the edge with 
other ending edges and 2 paths in which the edge is alone. Thus on the diagonal of 
(wrw, (GGT ) are n. If an edge, off-diagonaL say d, in the matrix wrw is diagonal 
in til: :n~trix GGT , oaly paths connecting it with an edge, say I, on the diagonal of 
the matrix wrw, arc counted twice. From them all paths longer than the path dl 

are subtracted in which the path ell is present. One element, say e, subtracts all paths 
longer than the path til, the path d I itself and moreover the path el instead the second 
path d I w'lich was counted tw;ce. This leav.::s zeros as off diagonal clements of 

(W~ W lI ) (GGT) or (GGT) (W:Wu)' Thus it is enough to divide W~Wu by 11 for obtaining 
(GG1) 1. 

Til: r':;,bo,ling for oriented trees is similar. only it is necessary to count with the 
S:g,1; oj' off-diagonal clements of W"6Wo and SST. They are opposite and thus the 
prodlll.:ts 0'- the ofT-diagonal elements of W"6WoSST or SSTW6Wo have always the 
n.:g,ltiv:; Sign. The Jiagonal clements of both quadratical form~ are positive. If the 
id'~ilticl columns and rows are multiplied, the number of walks with the d:agonal 
arc is counh:d twice and the walks of the off-diagonal elements arc substracted as 
befme. 10' ditTerent columns and rows are multiplied there arc two possible com
binatiuliS 0; s;gw; 

W"6Wo 

SST the same orientation 

SST the opposite orientation 

(+) diag. 

-I 

+1 

(Values in parentheses lie on the diagonals.) 
Both subtract walks as pnths were before O. 

+ 

( +2) 

+1 

+1 

( +2) 

Corollary: From W~WuGGT = GGTW~Wu = W6WoSST = SSTW6Wo = nl the 
pseudo inverse matrices W.;-l, W;I,G- 1 , S-I are determined. 

DISCUSSION 

The generalization of the relation of Zimm-Rouse matrices to all trees has many 
aspects. The viscoelastic theory of entangled polymer chains is not solved cornplete
ly '2-16 till now. Until the entanglements do not form cycles, the bond graph of the 

polymer Ins the inverse and the ROllse theory can be applied. 
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The interpretation of the Rouse matrix as the matrix of walks in a tree gives it the 
concrete meaning. There opens an interesting problem of the relation of topological 
walks in a tree with the walks of this tree in the geometrical lattice. These walks give 
good agreement with. the Rouse theory in the absence of excluded volume, but there 
are deviations in the presence of excluded volume17 . 

There is a sharp change of properties of entangled polymers at the gelation point. 
The gelation can be connected with formation of cycles by formation of at least two 
entanglements between two polymer chains, which makes both Kirchhoff matrices 
of the polymer STS and SST singular. In the literature matrices STS are often given 
as the Zimm matrices instead of SST. There is only a minor difference of elements 
of both matrices at chains, they have indentical spectra but one zero eigenvalue is 
present at STS, which has not any inverse. Many combinations of orientation of arcs 
are possible at branched trees giving different SST and also different W~Wo matrices. 
The orientation of arcs has no effect on the spectra of the matrices SST, because it 
has no effect on the quadratical form STS which is independent on the orientation 
of arcs, and it also has no effect on the Wiener number, but it gives different spectra 
of different matrices ~Wo. It would be useful to study possible effects of orientation 
of polymer chains connections on their viscoelastic properties. 

The fact that the trace of WTW is the Wiener number gives to its semiempirical 
application theoretical explanation, now the results of the Rouse theory can be used 
for explanation of all correlations of physical properties of trees with the Wiener 
number3 - 7 • 

The Wiener number is defined in the space of vertices also for cyclic graphs and 
graphs with multiple bonds, where the path and walk matrices Ware undefined. 

The Wiener number is not the only topological index based on paths. There was 
introduced the modified Wiener index for polymers18 • 

Many topological indices are based on the distance matrices D (ref. 19). These 
indices could be modified for matrices WTW. It is questionable that such indices 
except the path or walk polynomial were better then the eigenvalues themselves, but 
it would be interesting to compare them with the indices based on the distance 
matrix D. 

For study of physiological properties of molecules the numbers of paths of dif
ferent length were used20 • This is a practical application of the extended connectivity 
index based on the number of non-selfavoiding walks, obtained on the diagonal of 
the different powers of the adjacency matrix A. The numbers of selfreturning walks 
are the moments of eigenvalues of matrix A. Therefore the connecting the length of 
selfavoiding walks with the eigenvalues of the inverse matrix of the bond of a tree 
gives very interesting insight into the structure of the graph space. The relationship 
between the number of selfreturning walks and the Wiener number at some classes 
of graphs was found only recently23. 
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The zeros of the matching polynomial of a molecular graph M are eigenvalues of 
an acyclic graph T(H, v), which is constructed from the graph M as the graph all 
acyclic walks going from the vertex v (ref.24). 

It would be interesting if also their walk polynomials were related somewhat. 
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